Morphogenesis and dynamics of quantum state
نویسنده
چکیده
New construction of 4D dynamical space-time (DST) has been proposed in the framework of unification of relativity and quantum theory. Such unification is based solely on the fundamental notion of generalized coherent state (GCS) of N-level system and the geometry of unitary group SU(N) acting in state space C . Neither contradictable notion of quantum particle, nor space-time coordinates (that cannot be a priori attached to nothing) are used in this construction. Morphogenesis of the “field shell”-lump of GCS and its dynamics have been studied for N = 2 in DST. The main technical problem is to find non-Abelian gauge field arising from conservation law of the local Hailtonian vector field. The last one may be expressed as parallel transport of local Hamiltonian in projective Hilbert space CP (N − 1). Co-movable local “Lorentz frame” being attached to GCS is used for qubit encoding result of comparison of the parallel transported local Hamiltonian in infinitesimally close points. This leads to quasi-linear relativistic field equations with soliton-like solutions for “field shell” in emerged DST. The terms “comparison” and “encoding” resemble human’s procedure, but here they have objective content realized in invariant quantum dynamics. The dynamical motion of the lump in DST may be associated with “kinesis” time whereas the evolution parameter describing morphogenesis of GCS evolving in CP (N − 1), may be naturally identified with “metabole” time.
منابع مشابه
Dynamics of entangled quantum optical system in independent media
We study the dynamics of two three-level atoms interacting with independent bosonic Lorentzian reservoirs at zero temperature. Such systems can be created in far astronomical objects. Quantum mechanical behaviour of these particles can produce detectable effects on the spectroscopic identifications of these objects, if such behaviour remain stable during the interaction with their media. It is ...
متن کاملDynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملSuper operator Technique in Investigation of the Dynamics of a Two Non-Interacting Qubit System Coupled to a Thermal Reservoir
In this paper, we clarify the applicability of the super operator technique for describing the dissipative quantum dynamics of a system consists of two qubits coupled with a thermal bath at finite temperature. By using super operator technique, we solve the master equation and find the matrix elements of the density operator. Considering the qubits to be initially prepared in a general mixed st...
متن کاملبررسی دینامیک کوانتومی مدارهای الکتریکی مزوسکوپی با بار گسسته
The quantum dynamics of a charged particle in an infinite chain of single-state quantum wells, in tight-binding approximation and under the action of an arbitrary time-dependent external field is investigated. The connection between the Hamiltonian description of this model and the Hamiltonian of a discrete-charge mesoscopic quantum circuit is elucidated. Based on this connection, the persist...
متن کاملModulation Response and Relative Intensity Noise Spectra in Quantum Cascade Lasers
Static properties, relatively intensity noise and intensity modulation response in quantum cascade lasers (QCLs) studied theoretically in this paper. The present rate equations model consists of three equations for the electrons density in the conduction band and one equation for photons density in cavity length. Two equations were derived to calculate the noise and modulation response. Calcula...
متن کامل